EWAHBoolArray 0.8.0
A compressed bitmap class in C++
|
The class EWAHBoolArray is a compressed bitset data structure. It supports several word sizes by a template parameter (16-bit, 32-bit, 64-bit). You should expect the 64-bit word-size to provide better performance, but higher memory usage, while a 32-bit word-size might compress a bit better, at the expense of some performance.
The library also provides a basic BoolArray class which can serve as a traditional bitmap.
EWAH is used to accelerate the distributed version control system Git.
The Java counterpart of this library (JavaEWAH) is part of Apache Hive and its derivatives (e.g., Apache Spark) and Eclipse JGit. It has been used in production systems for many years. It is part of major Linux distributions.
This library is used by Hustle – A column oriented, embarrassingly distributed relational event database, by the The yt Project and by the fuzzing tool VUzzer.
Sets are a fundamental abstraction in software. They can be implemented in various ways, as hash sets, as trees, and so forth. In databases and search engines, sets are often an integral part of indexes. For example, we may need to maintain a set of all documents or rows (represented by numerical identifier) that satisfy some property. Besides adding or removing elements from the set, we need fast functions to compute the intersection, the union, the difference between sets, and so on.
To implement a set of integers, a particularly appealing strategy is the bitmap (also called bitset or bit vector). Using n bits, we can represent any set made of the integers from the range [0,n): it suffices to set the ith bit is set to one if integer i is present in the set. Commodity processors use words of W=32 or W=64 bits. By combining many such words, we can support large values of n. Intersections, unions and differences can then be implemented as bitwise AND, OR and ANDNOT operations. More complicated set functions can also be implemented as bitwise operations.
When the bitset approach is applicable, it can be orders of magnitude faster than other possible implementation of a set (e.g., as a hash set) while using several times less memory.
An uncompressed BitSet can use a lot of memory. For example, if you take a BitSet and set the bit at position 1,000,000 to true and you have just over 100kB. That's over 100kB to store the position of one bit. This is wasteful even if you do not care about memory: suppose that you need to compute the intersection between this BitSet and another one that has a bit at position 1,000,001 to true, then you need to go through all these zeroes, whether you like it or not. That can become very wasteful.
This being said, there are definitively cases where attempting to use compressed bitmaps is wasteful. For example, if you have a small universe size. E.g., your bitmaps represent sets of integers from [0,n) where n is small (e.g., n=64 or n=128). If you can use an BitSet and it does not blow up your memory usage, then compressed bitmaps are probably not useful to you. In fact, if you do not need compression, then a BitSet offers remarkable speed. One of the downsides of a compressed bitmap like those provided by EWAHBoolArray is slower random access: checking whether a bit is set to true in a compressed bitmap takes longer.
EWAH is part of a larger family of compressed bitmaps that are run-length-encoded bitmaps. They identify long runs of 1s or 0s and they represent them with a marker word. If you have a local mix of 1s and 0, you use an uncompressed word.
There are many formats in this family beside EWAH:
There are other alternatives however. For example, the Roaring format is not a run-length-encoded hybrid. It provides faster random access than even EWAH.
Please see our main header file:
https://github.com/lemire/EWAHBoolArray/blob/master/include/ewah/ewah.h
You may also consult our Web documentation.
The EWAHBoolArray project is under a dual license (Apache/MIT). Users of the library may choose one or the other license.
None. (Will work under MacOS, Windows or Linux.)
Compilers tested: clang++, g++, Intel compiler, Microsoft Visual Studio
It works on x64 processors as well as on 32-bit ARM processors.
Versions 0.5 and above assume that the compiler supports the C++11 standard.
cmake -B build cmake --build build cd build ctest --test-dir build
To build with at least Visual Studio 2017 directly in the IDE:
Visual C++ tools for CMake
optional component when installing the C++ Development Workload within Visual Studio.File > Open > Folder...
to open the CRoaring folder.CMakeLists.txt
in the parent directory within Solution Explorer
and select Build
to build the project.Select Startup Item...
menu and choose one of the tests. Run the test by pressing the button to the left of the dropdown.Please see examples/example.cpp
. For an example with tabular data, please see example2.cpp
.
Please see
Dimitrios Vasilas wrote a wrapper for JavaScript.
You can install it by typing:
npm install -g node-gyp npm install node-bitmap-ewah
Josh Ferguson wrote a wrapper for Ruby. The implementation is packaged and installable as a ruby gem.
You can install it by typing:
gem install ewah-bitset
We provide read and write functions.
We do not correct for the endianess. If you use both little endian and big endian machines, you should be careful. Thankfully, big endian hardware is vanishingly rare.
When loading data from an untrusted source, we recommend that you use hashes to validate the content.