
Unicode at gigabytes per second
Daniel Lemire with Wojciech Muła and John Keiser
professor, Université du Québec (TÉLUQ)
Montreal

blog: https://lemire.me
twitter: @lemire
GitHub: https://github.com/lemire/

credit for figures: Wojciech Muła

 many other contributors!

https://lemire.me/
https://twitter.com/lemire
https://github.com/lemire/

From characters to bits
Morse code

A : 0 1

B : 1 0 0 0

C : 1 0 1 0

26 letters.

2

Fixed-length codes
Baudot code (~1860). 5 bits.

Hollerith code (~1896). 6 bits.

American Standard-Code for Information Interchange or ASCII (~1961). 7 bits. 128
characters.

3

4

Too many fixed-length codes!
IBM: Binary Coded Decimal Interchange Code. 6 bits.

IBM: Extended Binary Coded Decimal Interchange Code or EBCDIC. 8 bits.

ISO 8859 (~1987). 8 bits. European.

Thai (TIS 620), Indian languages (ISCII), Vietnamese (VISCII) and Japanese (JIS
X 0201).

Windows character sets, Mac character sets.

5

Unicode (late 1980s)
Extends ASCII.

Universal.

Replaces all other standards.

Typography, full localisation, extensible.

6

Unicode: how many bits?
16 bits ought to be enough?

Numerical range from 0x000000 to 0x10FFFF.

Would need 20 to 21 bits.

7

UTF-16 and UTF-8
Two main formats.

UTF-16: Java, C#, Windows

UTF-8: XML, JSON, HTML, Go, Rust, Swift

8

UTF-16 and UTF-8

character range UTF-8 bytes UTF-16 bytes

ASCII (0000-007F) 1 2

latin (0080-07FF) 2 2

asiatic (0800-D7FF, E000-FFFF) 3 2

supplemental (010000-10FFFF) 4 4

9

UTF-16
16-bit words.

characters in 0000-D7FF and E000-FFFF, stored as 16-bit values---using two
bytes.

characters in 010000-10FFFF are stored using a 'surrogate pair'.

Comes in two flavours (little and big endian at the 16-bit level).

10

UTF-16 (surrogate pair)
first word in D800-DBFF.

second word in DC00-DFFF.

character value is 10 least significant bits of each---second element is least
significant.

add 0x10000 to the result.

11

UTF-8
8-bit words (no endianess)

One 'leading' byte followed by 0 to 3 bytes.

12

UTF-8 format
Most significant bit of leading is zero, ASCII: [01000001].

3 most significant bits 110, two-byte sequence: [11000100] [10000101].

4 most significant bits 1100, three-byte sequence.

5 most significant bits 11000, four-byte sequence.

Non-leading bytes have 10 as the two most significant bits.

13

UTF-8 validation rules
The five most significant bits of any byte cannot be all ones.

The leading byte must be followed by the right number of continuation bytes.

A continuation byte must be preceded by a leading byte.

The decoded character must be larger than 7F for two-byte sequences, larger than
7FF for three-byte sequences, and larger than FFFF for four-byte sequences.

The decoded code-point value must be less than 110000

The code-point value must not be in the range D800-DFFF.

14

UTF-8/UTF-16 comparison (ASCII)

15

UTF-8/UTF-16 comparison (2-bytes)

16

UTF-8/UTF-16 comparison (3-bytes)

17

UTF-8/UTF-16 comparison (4-bytes)

18

UTF-8/UTF-16 transcoding
Must convert (transcode) from one format to the other format, while validating the
input.

19

Some numbers
bandwidth between node instances: over 3 GB/s

PCIe 4.0 disks (and PlayStation 5): over 5 GB/s

Popular C++ trancoding library (ICU): ~1 GB/s

20

Gigabytes per second?
x64, ARM, POWER: have SIMD instructions.

21

UTF-8 to UTF-
16

UTF-16 to UTF-
8

validation
table
size

Cameron's u8u16
(2008)

yes no yes N/A

Inoue et al. (2008) partial no no 105 kB

simdutf yes yes yes 20 kB

Software implementations (no formal paper): Goffart (2012) and Gatilov (2019)

22

Vectorized permutation
Can permute blocks of 16 bytes (or 32 bytes) using a single cheap instruction.

Need a precomputed shuffle mask.

data : [a b c d e f g]

shuffle mask : [3 1 0 3 3 2 -1] (indexes)

result : [d b a d d c 0]

Conversely may be used as a form of vectorized table lookup.

23

UTF-8 to UTF-16 transcoding (core)
Take a block of bytes.

Continuation bytes (leading bits 10, less than -64)

Non-continuation bytes are leading bytes

Bytes before a leading byte end a character

Build a bitmap

Use the bitmap in a lookup table

24

UTF-8 to UTF-16 transcoding (example)
Start with...

[01000001] ([11000100] [10000101])
[01100011] ([11000011] [10000011]) [01101100] ([11000101] [10111010])

We have 9 bytes. Build a 9-bit bitmap where '1' means the end of a character

101101101

Use this as index in a table.

25

UTF-8 to UTF-16 transcoding (table)
If using 12-byte blocks, need 4096-long table.

Each entry points to a shuffle mask and number of consumed bytes.

26

UTF-8 to UTF-16 transcoding (cases)
Shuffle masks are sorted into 'cases'.

1. First 64 cases correspond to 1-byte or 2-byte characters only.

2. Next 81 cases correspond to 1, 2 or 3 bytes per character.

3. Next 64 cases correspond to general case (1 to 4 bytes).

Each case corresponds to a code path.

27

28

UTF-8 to UTF-16 transcoding (more tricks)
1. Load blocks of 64 bytes.

2. Check for fast paths (e.g. all ASCII).

3. Eat 12 bytes at a time within 64 bytes.

4. Add a few fast path (e.g., all ASCII, all 2-byte, all 3-byte).

29

UTF-8 to UTF-16 transcoding (validation)
Given a 64-byte block, we can use a fast vectorized
validation routine.

Validating UTF-8 In Less Than One Instruction Per Byte, Software: Practice and
Experience 51 (5), 2021

30

UTF-8 to UTF-16 transcoding (core algo)
You can identify most UTF-8 errors by looking at sequences of 3 nibbles (4-bit).

E.g., ASCII followed by continuation, leading not followed by continuation byte.

Do three lookups (using shuffe mask) and compute a bitwise AND. We call this
vectorized classification.

31

Simplified vectorized classification
Suppose you want to find all instances where value 3 is followed by
value 1 or 2.

Create two lookup tables.

One for first nibble [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]

second nibble [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

Lookup first nibble in table, lookup second, compute bitwise AND.

If result is 1, you have a match.

Can do this in parallel over many values.

32

Fancier vectorized classification
Suppose you want to find all instances where value 3 is followed by
value 1 or 2. Value 5 followed by 0. Value 6 followed by 10.

Create two lookup table2.

One for first nibble [0,0,0,1,0,2,4,0,0,0,0,0,0,0,0,0]

second nibble [2,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0]

Lookup first nibble in table, lookup second, compute bitwise AND.

33

Array of nibbles:

original: [a0 a1 a2 a3 a4 ...]

shift: [a1 a2 a3 a4 ...]

shift: [a2 a3 a4 ...]

f([a0 a1 a2 a3 a4 ...]) AND g([a1 a2 a3 a4 ...]) AND g([a2 a3 a4 ...])

34

UTF-16 to UTF-8
The other direction (from UTF-16 to UTF-8) is somewhat easier!

35

UTF-16 to UTF-8 (ASCII)
If all 16-bit words are ASCII (0000-007F), use a fast routine: 16 bytes into 8 'packed'
bytes.

36

UTF-16 to UTF-8 (0000-07FF)
If all 16-bit words are in (0000-07FF)... build an 8-bit bitset indicating which 16-byte
words are ASCII (0000-007F), load a shuffle mask, permute and patch.

37

UTF-16 to UTF-8 (0000-07FF, E000-FFFF)
If all 16-bit words are in the ranges 0000-D7FF, E000-FFFF, we use another similar
specialized routine to produce sequences of one-byte, two-byte and three-byte UTF-8
characters.

Otherwise, when we detect that the input register contains at least one part of a
surrogate pair, we fall back to a conventional/scalar code path.

38

Experiments
AMD processor (AMD EPYC 7262, Zen 2 microarchitecture, 3.39 GHz) and
GCC10.

International Components for Unicode (UCI)

u8u16 library

lipsum text in various languages

39

ASCII transcoding

UTF-8 to UTF-16 UTF-16 to UTF-8

simdutf 20 GB/s 36 GB/s

UCI 1 GB/s 2 GB/s

40

41

Software

https://github.com/simdutf/simdutf

Open source, no patent.

ARM NEON, SSE, AVX...

Support runtime dispatch: adapts to your CPU.

Easy to use: drop simdutf.cpp and simdutf.h in your project.

Compiles to tens of kilobytes.

42

https://github.com/simdutf/simdutf

Further reading

Lemire, Daniel and Wojciech Muła , Transcoding Billions of Unicode Characters
per Second with SIMD Instructions, Software: Practice and Experience (to appear)
https://r-libre.teluq.ca/2400/

Blog: https://lemire.me/blog/

43

https://r-libre.teluq.ca/2400/
https://lemire.me/blog/

