Unicode at gigabytes per second

Daniel Lemire with Wojciech Muta and John Keiser
professor, Université du Québec (TELUQ)
Montreal I+)

blog: https://lemire.me

twitter: @lemire
GitHub: https://github.com/lemire/

credit for figures: Wojciech Muta

| many other contributors!

https://lemire.me/
https://twitter.com/lemire
https://github.com/lemire/

From characters to bits

Morse code

e A:01
e B:1000
e C:1010

26 letters.

Fixed-length codes

e Baudot code (~1860). 5 hits.
e Hollerith code (~1896). 6 bits.

e American Standard-Code for Information Interchange or ASCII (~1961). 7 bits. 128
characters.

Dec | Hex| Chr Dec| Hex| Chr Dec| Hex| Chr Dec| Hex| Chr
0 | 00 |NUL 32 | 20 [space] 64 | 40 | @ 96 | 60

1| 01 |SOH 33| 21| ! 65| 41| A 97| 61| a
2 | 02 |STX d 22| " 66 | 42| B 98|62 b
3 | 03 |ETX 35| 23| # 67| 43| C 99| 63| ¢
4 | 04 |EOT 36|24 9 68 | 44| D 100 64 | d
5 | 05 |ENQ 37|25 % 69 | 45| E 101 65 | e
6 | 06 |ACK 38| 26| & 70|46 | F 102 66 | f
7 | 07 |BEL 39 | 27 71| 47| G 103| 67 | ¢
8 | 08 | BS 40| 28 | (721 48| H 104| 68 | h
9 | 09| HT 41129) 73149 | 105| 69 | i
10 | OA | LF 42 2Aa] * 741 4A| J 106| 6A | j
11| 0B | VT 43 | 2B | + 751 4B | K 107| 6B | k
12 | 0C | FF 44 | 2C 76 |4C| L 108| 6C | |
13| 0D | CR 45| 2D | - 77 14D M 109| 6D | m
14 | OE | SO 46 | 2E 78 |4E| N 110 6E | n
16| OF | SI a7 | 2F | / 791 4F | O 11| 6F | o
16 | 10 |DLE 48 | 30| 0O 80| 50| P 1121 70 | p
17 | 11 | DCH1 49 | 31| 1 81| 51| Q 113 71| ¢
18 | 12 |DC2 50| 32| 2 82|52 R 1141 72 r
19 | 13 |DC3 51133]| 3 83|53]| S 1151 73 | s
20 | 14 |DC4 52 | 34| 4 84 | 54| T 116 74 | t
21| 15 |NAK 53 |1 35| 5 85| 55| U 117| 75 u
22 | 16 [SYN 54136 | 6 86 | 56| V 118 76 | v
23 | 17 |ETB 55 | 37| 7 87 | 57 | W 119 77 | w
24 | 18 [CAN 56 | 38| 8 88 | 58| X 120 78 | x
25| 19 [EM 57139 9 89|59 Y 121179 | vy
26 | 1A [SUB 58 | 3A 90 | 5A| Z 1221 7A | z
27 | 1B |ESC 59 | 3B | 91|58 [123 7B | {
28 | 1IC| FS 60 | 3C| < 92 |5C| \ 1241 7C | |
29 | 1D| GS 61|3D| = 93 |5D| | 125| 7D | }
30 | 1E| RS 62 | 3E| > 94 | SE| ~ 126 7E | ~
31| 1F | US 63 | 3F| ? 95 | 5F 127| 7F | DEL

Too many fixed-length codes!

IBM: Binary Coded Decimal Interchange Code. 6 bits.
IBM: Extended Binary Coded Decimal Interchange Code or EBCDIC. 8 bits.
ISO 8859 (~1987). 8 bits. European.

Thal (TIS 620), Indian languages (ISCIl), Vietnamese (VISCIl) and Japanese (JIS
X 0201).

Windows character sets, Mac character sets.

Unicode (late 1980s)

Extends ASCII.

Universal.

Replaces all other standards.

Typography, full localisation, extensible.

Unicode: how many bits?

e 16 bits ought to be enough?
e Numerical range from 0x000000 to Ox10FFFF.
e Would need 20 to 21 bits.

UTF-16 and UTF-8

Two main formats.
UTF-16: Java, C#, Windows
UTF-8: XML, JSON, HTML, Go, Rust, Swift

UTF-16 and UTF-8

character range UTF-8 bytes UTF-16 bytes
ASCII (0000-007F) 1 2
latin (0080-07FF) 2 2
asiatic (0800-D7FF, EOOO-FFFF) 3 2
supplemental (010000-10FFFF) 4 4

UTF-16

e 16-bit words.

e characters in 0000-D7FF and EOOO-FFFF, stored as 16-bit values---using two
bytes.

e characters in 010000-10FFFF are stored using a 'surrogate pair'.

e Comes in two flavours (little and big endian at the 16-bit level).

10

UTF-16 (surrogate pair)

e first word in D800-DBFF.
e second word in DCOO-DFFF.

e character value is 10 least significant bits of each---second element is least
significant.

e add 0x10000 to the resuilt.

11

UTF-8

e 8-bit words (no endianess)

e One 'leading’ byte followed by 0 to 3 bytes.

12

UTF-8 format

Most significant bit of leading is zero, ASCII: [01000001].

3 most significant bits 110, two-byte sequence: [11000100] [10000101].
4 most significant bits 1100, three-byte sequence.

5 most significant bits 11000, four-byte sequence.

Non-leading bytes have 10 as the two most significant bits.

13

UTF-8 validation rules

e The five most significant bits of any byte cannot be all ones.

The leading byte must be followed by the right number of continuation bytes.

A continuation byte must be preceded by a leading byte.

The decoded character must be larger than 7F for two-byte sequences, larger than
7FF for three-byte sequences, and larger than FFFF for four-byte sequences.

The decoded code-point value must be less than 110000

The code-point value must not be in the range D800-DFFF.

14

UTF-8/UTF-16 comparison (ASCII)

UTF-8 byte O
A

O|la|b|c|d|e|f]|8

ojofojojojofofo|jo|a|bflc|d|e]f]|8

~
UTF-16 word O

UTF-8/UTF-16 comparison (2-bytes)

UTF-8 byte O UTF-8 byte 1
A A
1|1 [0|a|b|c]|d]|e BN f | 8 | h i j k
A 2 | b crd|l€e]| f|E]h i j k

~
UTF-16 word O

UTF-8/UTF-16 comparison (3-bytes)

UTF-8 byte O UTF-8 byte 1 UTF-8 byte 2
A A A

1|1|1|0|a|bfc|d||2]|O0|e|f|&8|h|i|i|[|2]|O|k]|I]|m|n|o|P

alblc|d|e|[f|8|h|[i]|j|[k]Il[m|n]o|P

iV
UTF-16 word O

UTF-8/UTF-16 comparison (4-bytes)

UTF-8 byte O UTF-8 byte 1 UTF-8 byte 2 UTF-8 byte 3
A N A A

ul N :“\f - o~ N
(TIAolIbIc) (TToTdle f[e[n[i) (TOTIIkITImlnlo] (IToTPlalr [s Tt u]
EAOAARIAECDIEFIGHN] EEOMIOK LMNIOIPIQRIS[T]

~N ~
UTF-16 word O UTF-16 word 1

18

UTF-8/UTF-16 transcoding

e Must convert (transcode) from one format to the other format, while validating the
Input.

19

Some numbers

e bandwidth between node instances: over 3 GB/s
e PCle 4.0 disks (and PlayStation 5): over 5 GB/s
e Popular C++ trancoding library (ICU): ~1 GB/s

20

Gigabytes per second?

e X64, ARM, POWER: have SIMD instructions.

21

UTF-8 to UTF-
16

Cameron's u8ul6
yes

(2008)

Inoue et al. (2008) partial

simdutf yes

UTF-16 to UTF-
8

no

no

yes

validation

yes

no

yes

table
size

N/A

105 kB
20 kB

Software implementations (no formal paper): Goffart (2012) and Gatilov (2019)

22

Vectorized permutation

Can permute blocks of 16 bytes (or 32 bytes) using a single cheap instruction.
Need a precomputed shuffle mask.

data:[abcdef(]

shuffle mask : [31 0 3 3 2 -1] (indexes)

result: [dbaddcO]

Conversely may be used as a form of vectorized table lookup.

23

UTF-8 to UTF-16 transcoding (core)

e Take a block of bytes.
e Continuation bytes (leading bits 10, less than -64)

e Non-continuation bytes are leading bytes

Bytes before a leading byte end a character

Build a bitmap

Use the bitmap in a lookup table

UTF-8 to UTF-16 transcoding (example)

Start with...

[01000001] ([11000100] [10000101])
[01100011] ([11000011] [10000011]) [01101100] ([11000101] [10111010])

We have 9 bytes. Build a 9-bit bitmap where '"1' means the end of a character
101101101

Use this as index in a table.

25

UTF-8 to UTF-16 transcoding (table)

e If using 12-byte blocks, need 4096-long table.

e Each entry points to a shuffle mask and number of consumed bytes.

26

UTF-8 to UTF-16 transcoding (cases)

Shuffle masks are sorted into 'cases'.

1. First 64 cases correspond to 1-byte or 2-byte characters only.
2. Next 81 cases correspond to 1, 2 or 3 bytes per character.

3. Next 64 cases correspond to general case (1 to 4 bytes).

Each case corresponds to a code path.

27

char O char 1 char 2 char 3 char 4 char 5
- M M
UTF-8 EIEIEIEIEI

IOIOIOIOIGIOIGIDIOI1|1|0|0|0|0|1|0|OIOIOIOIOIDIOIGUOIGIOI1IGI1|0|0|0|0|0|0|0|0|0|1I1|0|0|0|1|1|0|0IOIOIOIOIOIOIOIJ1I1IGIOI1|1|0|0|0|0|0|0|0|0|0|1I1|0|1|1|0|0|0|0|0|0|0|0|0|0|0|J1I1|1|0|1|0|
c IOIOIOIOIGIOIGIOIOIOIDIOIDIOI0I0I0I0I0-GIOIOIDIOIOIDIOIOIOIOIOIOIOIOIGIOIOIGIOIOIDIOIOIDIOI0-0IGIDIGIOIOIOIDIOIDIOI0I0I0I0IOIOIOIOIOIOIGIOIOIOIOIO EEIEIEIEIEEIEI
|0|0IO|0IOI0|0IGIDIOlGIOIOIDIOIOIDIO|OIOIO-DIGIDIOIOIDIOIDIOI ofo] ofofo [ofofofofofo]
UTF-16 IOIOIOIOIGIOIGIDIOI1|1|0|0|0|0|1IOIOIOIOIO-OIGIOI1IGI1|0|0|0|0|0|0|0|0|0|1|1|0|0|0|1|1|0|0|0|0|0-1I1|0|0|1|43@DIOIOIOIOIOI3\|2IiIiIOIiI1|0|0 OIOIDIOQTFHEFH

char O char 1 char 2 ch;fr 3 char 4 char 5

28

UTF-8 to UTF-16 transcoding (more tricks)

1. Load blocks of 64 bytes.

2. Check for fast paths (e.g. all ASCII).

3. Eat 12 bytes at a time within 64 bytes.

4. Add a few fast path (e.g., all ASCII, all 2-byte, all 3-byte).

29

UTF-8 to UTF-16 transcoding (validation)

Given a 64-byte block, we can use a fast vectorized
validation routine.

e Validating UTF-8 In Less Than One Instruction Per Byte, Software: Practice and
Experience 51 (5), 2021

30

UTF-8 to UTF-16 transcoding (core algo)

e You can identify most UTF-8 errors by looking at sequences of 3 nibbles (4-bit).

e E.g., ASCII followed by continuation, leading not followed by continuation byte.

Do three lookups (using shuffe mask) and compute a bitwise AND. We call this
vectorized classification.

31

Simplified vectorized classification

Suppose you want to find all instances where value 3 is followed by
value 1 or 2.

Create two lookup tables.

One for first nibble [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]

second nibble [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

Lookup first nibble in table, lookup second, compute bitwise AND.
If result is 1, you have a match.

Can do this in parallel over many values.

32

Fancier vectorized classification

Suppose you want to find all instances where value 3 is followed by
value 1 or 2. Value 5 followed by 0. Value 6 followed by 10.

Create two lookup table2.

One for first nibble [0,0,0,1,0,2,4,0,0,0,0,0,0,0,0,0]

second nibble [2,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0]

Lookup first nibble in table, lookup second, compute bitwise AND.

33

Array of nibbles:

e original: [a0 al a2 a3 a4 ...]

e shift: [al a2 a3 a4 ..]

e shift: [a2 a3 a4 ..]

e f(]a0 al a2 a3 a4 ...]) AND g([al a2 a3 a4 ...]) AND g([a2 a3 a4 ...])

34

UTF-16 to UTF-8

The other direction (from UTF-16 to UTF-8) is somewhat easier!

35

UTF-16 to UTF-8 (ASCII)

If all 16-bit words are ASCII (0000-007F), use a fast routine: 16 bytes into 8 'packed'
bytes.

36

UTF-16 to UTF-8 (0000-07FF)

If all 16-bit words are in (0000-07FF)... build an 8-bit bitset indicating which 16-byte
words are ASCII (0000-007F), load a shuffle mask, permute and patch.

37

UTF-16 to UTF-8 (0000-07FF, E000-FFFF)

If all 16-bit words are in the ranges 0000-D7FF, EOOO-FFFF, we use another similar
specialized routine to produce seqguences of one-byte, two-byte and three-byte UTF-8
characters.

Otherwise, when we detect that the input register contains at least one part of a
surrogate pair, we fall back to a conventional/scalar code path.

38

Experiments

e AMD processor (AMD EPYC 7262, Zen 2 microarchitecture, 3.39 GHz) and
GCC10.

e International Components for Unicode (UCI)

e U8ul6 library

e lipsum text in various languages

39

ASCII transcoding

UTF-8 to UTF-16 UTF-16 to UTF-8
simdutf 20 GB/s 36 GB/s
UCI 1 GB/s 2 GB/s

40

4 U B E Arabic
BB Chinese

" 1 Japanese
f i Korean

Wy o)
O’O Qd’({\]& (Qa&

(a) UTF-8 to UTF-16 transcoding

GB/s

B0 Arabic
8 10N Chinese

" I Japanese
I § Korean

@)
|

7 OO. O (Q‘-@

(b) UTF-16 to UTF-8 transcoding

41

Software

https://github.com/simdutf/simdutf

Open source, no patent.

ARM NEON, SSE, AVX...

Support runtime dispatch: adapts to your CPU.

Easy to use: drop simdutf.cpp and simdutf.h in your project.

Compiles to tens of kilobytes.

42

https://github.com/simdutf/simdutf

Further reading

e Lemire, Daniel and Wojciech Muta , Transcoding Billions of Unicode Characters
per Second with SIMD Instructions, Software: Practice and Experience (to appear)
https://r-libre.teluq.ca/2400/

e Blog: https://lemire.me/blog/

43

https://r-libre.teluq.ca/2400/
https://lemire.me/blog/

