
Binary Fuse Filters: Fast and Tiny Immutable Filters
Daniel Lemire
professor, Data Science Research Center
Université du Québec (TÉLUQ)
Montreal

blog: https://lemire.me
twitter: @lemire
GitHub: https://github.com/lemire/

https://lemire.me/
https://twitter.com/lemire
https://github.com/lemire/

Probabilistic filters?
Is in the set ?

Maybe or definitively not

2

Usage scenario?
We have this expensive database. Querying it cost you.

Most queries should not end up in the data.

We want a small 'filter' that can prune out queries.

3

Theoretical bound
Given elements in the set

Spend bits per element

Get a false positive rate of

4

Usual constraints
Fixed initial capacity

Difficult to update safely without access to the set

To get a 1% false-positive rate: bits?

5

Hash function
From any objet in the universe to a word (e.g., 64-bit word)

Result looks random

6

uint64_t murmur64(uint64_t h) {
 h ^= h >> 33;
 h *= UINT64_C(0xff51afd7ed558ccd);
 h ^= h >> 33;
 h *= UINT64_C(0xc4ceb9fe1a85ec53);
 h ^= h >> 33;
 return h;
}

7

Conventional Bloom filter
Start with a bitset .

Using k hash functions .

8

Adding an element
Given an object from the set, set up to k bits to 1

9

Checking an element
Given an object from the universe, set up to k bits to 1

10

Checking an element: implementation
Typical implementation is branchy

If not , return false

If not , return false

...

return true

11

 uint64_t hash = hasher(key);
 uint64_t a = (hash >> 32) | (hash << 32);
 uint64_t b = hash;
 for (int i = 0; i < k; i++) {
 if ((data[reduce(a, length)] & getBit(a)) == 0) {
 return NotFound;
 }
 a += b;
 }
 return Found;

12

False positive rate

bits per element hash functions fpp

9 6 1.3%

10 7 0.8%

12 8 0.3%

13 9 0.2%

15 10 0.07%

16 11 0.04%

13

Bloom filters: upsides
Fast construction

Flexible: excess capacity translates into lower false positive rate

Degrades smoothly to a useless but 'correct' filter

14

15

16

Bloom filters: downsides
44% above the theoretical minimum in storage

Slower than alternatives (lots of memory accesses)

17

18

Memory accesses

number of hash functions cache misses (miss) cache misses (hit)

8 3.5 7.5

11 3.8 10.5

(Intel Ice Lake processor, out-of-cache filter)

19

Mispredicted branches

number of hash functions all out all in

8 0.95 0.0

11 0.95 0.0

(Intel Ice Lake processor, out-of-cache filter)

20

Performance

number of hash functions always out (cycles/entry) always in (cycles/entry)

8 135 170

11 140 230

(Intel Ice Lake processor, out-of-cache filter)

21

Blocked Bloom filters
Same as a Bloom filters, but for a given object, put all bits in one cache line

Optional: Use SIMD instructions to reduce instruction count

22

Blocked Bloom filters: pros/cons
Stupidly fast in both construction and queries

~56% above the theoretical minimum in storage

23

 auto hash = hasher_(key);
 uint32_t bucket_idx = reduce(rotl64(hash, 32), bucketCount);
 __m256i mask = MakeMask(hash);
 __m256i bucket = directory[bucket_idx];
 return _mm256_testc_si256(bucket, mask);

24

Binary fuse filters
Based on theoretical work by Dietzfelbinger and Walzer

Immutable datastructure: build it once

Fill it to capacity

Fast construction

Fast and simple queries

25

Arity : 3-wise, 4-wise
3-wise version has three hits, 12% overhead

4-wise version has four hits, 8% overhead

26

Queries are silly
Have an array of fingerprints (e.g., 8-bit words)

Compute 3 (or 4) hash functions:

Compute fingerprint function (8-bit word)

Compute XOR and compare with fingerprint:

27

bool contain(uint64_t key, const binary_fuse_t *filter) {
 uint64_t hash = mix_split(key, filter->Seed);
 uint8_t f = fingerprint(hash);
 binary_hashes_t hashes = hash_batch(hash, filter);
 f ^= filter->Fingerprints[hashes.h0] ^ filter->Fingerprints[hashes.h1] ^
 filter->Fingerprints[hashes.h2];
 return f == 0;
}

28

cache misses mispredictions

3-wise binary fuse 2.8 0.0

4-wise binary fuse 3.7 0.0

(Intel Ice Lake processor, out-of-cache filter)

29

always out
(cycles/entry)

always in
(cycles/entry)

bits per
entry

Bloom 135 170 12

3-wise bin.
fuse

85 85 9.0

4-wise bin.
fuse

100 100 8.6

(Intel Ice Lake processor, out-of-cache filter)

30

31

Construction 1
Start with array for fingerprints containing slightly more fingerprints than you have
elements in the set

Divide the array into segments (e.g., 300 disjoint)

Number of fingerprints in segment: power of two (hence binary)

32

Construction 2
Map each object in set, to locations , ,

The locations should be in three consecutive segments (so relatively nearby in
memory).

33

Construction 3
At the end, each location is associated with some number of objects from the
set

34

Construction 4
Find a location mapped from a single set element , e.g.,

Record this location which is owned by

Remove the mapping of to locations , ,

Repeat

35

Construction 5
Almost always, the construction terminates after one trial

Go through the matched keys, in reverse order, adn set (e.,g.)

36

Construction: Performance
Implemented naively: terrible performance (random access!!!)

Before the construction begins, sort the elements of the sets according to the
segments they are mapped to.

This greatly accelerates the construction

37

38

How does the performance scale with size?
For warm small filters, number of access is less important.
Becomes more computational.

For large cold filters, accesses are costly.

39

10M entries

ns/query (all
out)

ns/query (all
in)

fpp
bits per
entry

Bloom 17 14 0.32% 12.0

Blocked Bloom
(NEON)

3.8 3.8 0.6% 12.8

3-wise bin. fuse 3.5 3.5 0.39% 9.0

4-wise bin. fuse 4.0 4.0 0.39% 8.6

(Apple M2)

40

100M entries

ns/query (all
out)

ns/query (all
in)

fpp
bits per
entry

Bloom 38 33 0.32% 12.0

Blocked Bloom
(NEON)

11 11 0.6% 12.8

4-wise bin. fuse 17 17 0.39% 9.0

4-wise bin. fuse 20 20 0.39% 8.6

(Apple M2)

41

Compressibility (zstd)

bits per entry (raw) bits per entry (zstd)

Bloom 12.0 12.0

3-wise bin. fuse 9.0 8.59

4-wise bin. fuse 8.60 8.39

theory 8.0 8.0

42

Sending compressed filters
Compressed (zstd) binary fuse filters can be within 5% of the theoretical minimum.

43

Some links
Bloom filters in Go: https://github.com/bits-and-blooms/bloom

Binary fuse filters in Go: https://github.com/FastFilter/xorfilter

Binary fuse filters in C: https://github.com/FastFilter/xor_singleheader

Binary fuse filters in Java: https://github.com/FastFilter/fastfilter_java

Giant benchmarking platform: https://github.com/FastFilter/fastfilter_cpp

44

https://github.com/bits-and-blooms/bloom
https://github.com/FastFilter/xorfilter
https://github.com/FastFilter/xor_singleheader
https://github.com/FastFilter/fastfilter_java
https://github.com/FastFilter/fastfilter_cpp

Other Links
Blog https://lemire.me/blog/

Twitter: @lemire

GitHub: https://github.com/lemire

45

https://lemire.me/blog/
https://github.com/lemire

