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Probabilistic filters?
Is  in the set ?

Maybe or definitively not
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Usage scenario?
We have this expensive database. Querying it cost you.

Most queries should not end up in the data.

We want a small 'filter' that can prune out queries.
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Theoretical bound
Given  elements in the set

Spend  bits per element

Get a false positive rate of 
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Usual constraints
Fixed initial capacity

Difficult to update safely without access to the set

To get a 1% false-positive rate:  bits?
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Hash function
From any objet in the universe to a word (e.g., 64-bit word)

Result looks random
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uint64_t murmur64(uint64_t h) {
  h ^= h >> 33;
  h *= UINT64_C(0xff51afd7ed558ccd);
  h ^= h >> 33;
  h *= UINT64_C(0xc4ceb9fe1a85ec53);
  h ^= h >> 33;
  return h;
}
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Conventional Bloom filter
Start with a bitset .

Using k  hash functions .
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Adding an element
Given an object  from the set, set up to k  bits to 1
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Checking an element
Given an object  from the universe, set up to k  bits to 1
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Checking an element: implementation
Typical implementation is branchy

If not , return false

If not , return false

...

return true
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  uint64_t hash = hasher(key);
  uint64_t a = (hash >> 32) | (hash << 32);
  uint64_t b = hash;
  for (int i = 0; i < k; i++) {
    if ((data[reduce(a, length)] & getBit(a)) == 0) {
      return NotFound;
    }
    a += b;
  }
  return Found;
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False positive rate

bits per element hash functions fpp

9 6 1.3%

10 7 0.8%

12 8 0.3%

13 9 0.2%

15 10 0.07%

16 11 0.04%
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Bloom filters: upsides
Fast construction

Flexible: excess capacity translates into lower false positive rate

Degrades smoothly to a useless but 'correct' filter
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Bloom filters: downsides
44% above the theoretical minimum in storage

Slower than alternatives (lots of memory accesses)
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Memory accesses

number of hash functions cache misses (miss) cache misses (hit)

8 3.5 7.5

11 3.8 10.5

(Intel Ice Lake processor, out-of-cache filter)
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Mispredicted branches

number of hash functions all out all in

8 0.95 0.0

11 0.95 0.0

(Intel Ice Lake processor, out-of-cache filter)
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Performance

number of hash functions always out (cycles/entry) always in (cycles/entry)

8 135 170

11 140 230

(Intel Ice Lake processor, out-of-cache filter)
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Blocked Bloom filters
Same as a Bloom filters, but for a given object, put all bits in one cache line

Optional: Use SIMD instructions to reduce instruction count

22



Blocked Bloom filters: pros/cons
Stupidly fast in both construction and queries

~56% above the theoretical minimum in storage
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  auto hash = hasher_(key);
  uint32_t bucket_idx = reduce(rotl64(hash, 32), bucketCount);
  __m256i mask = MakeMask(hash);
  __m256i bucket = directory[bucket_idx];
  return _mm256_testc_si256(bucket, mask);
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Binary fuse filters
Based on theoretical work by Dietzfelbinger and Walzer

Immutable datastructure: build it once

Fill it to capacity

Fast construction

Fast and simple queries
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Arity : 3-wise, 4-wise
3-wise version has three hits, 12% overhead

4-wise version has four hits, 8% overhead

26



Queries are silly
Have an array of fingerprints (e.g., 8-bit words)

Compute 3 (or 4) hash functions: 

Compute fingerprint function (  8-bit word)

Compute XOR and compare with fingerprint:
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bool contain(uint64_t key, const binary_fuse_t *filter) {
  uint64_t hash = mix_split(key, filter->Seed);
  uint8_t f = fingerprint(hash);
  binary_hashes_t hashes = hash_batch(hash, filter);
  f ^= filter->Fingerprints[hashes.h0] ^ filter->Fingerprints[hashes.h1] ^
       filter->Fingerprints[hashes.h2];
  return f == 0;
}
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cache misses mispredictions

3-wise binary fuse 2.8 0.0

4-wise binary fuse 3.7 0.0

(Intel Ice Lake processor, out-of-cache filter)
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always out
(cycles/entry)

always in
(cycles/entry)

bits per
entry

Bloom 135 170 12

3-wise bin.
fuse

85 85 9.0

4-wise bin.
fuse

100 100 8.6

(Intel Ice Lake processor, out-of-cache filter)
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Construction 1
Start with array for fingerprints containing slightly more fingerprints than you have
elements in the set

Divide the array into segments (e.g., 300 disjoint)

Number of fingerprints in segment: power of two (hence binary)
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Construction 2
Map each object  in set, to locations , , 

The locations should be in three consecutive segments (so relatively nearby in
memory).
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Construction 3
At the end, each location  is associated with some number of objects from the
set
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Construction 4
Find a location mapped from a single set element , e.g., 

Record this location which is owned by 

Remove the mapping of  to locations , , 

Repeat
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Construction 5
Almost always, the construction terminates after one trial

Go through the matched keys, in reverse order, adn set (e.,g.)
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Construction: Performance
Implemented naively: terrible performance (random access!!!)

Before the construction begins, sort the elements of the sets according to the
segments they are mapped to.

This greatly accelerates the construction
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How does the performance scale with size?
For warm small filters, number of access is less important.
Becomes more computational.

For large cold filters, accesses are costly.
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10M entries

ns/query (all
out)

ns/query (all
in)

fpp
bits per
entry

Bloom 17 14 0.32% 12.0

Blocked Bloom
(NEON)

3.8 3.8 0.6% 12.8

3-wise bin. fuse 3.5 3.5 0.39% 9.0

4-wise bin. fuse 4.0 4.0 0.39% 8.6

(Apple M2)
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100M entries

ns/query (all
out)

ns/query (all
in)

fpp
bits per
entry

Bloom 38 33 0.32% 12.0

Blocked Bloom
(NEON)

11 11 0.6% 12.8

4-wise bin. fuse 17 17 0.39% 9.0

4-wise bin. fuse 20 20 0.39% 8.6

(Apple M2)
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Compressibility (zstd)

bits per entry (raw) bits per entry (zstd)

Bloom 12.0 12.0

3-wise bin. fuse 9.0 8.59

4-wise bin. fuse 8.60 8.39

theory 8.0 8.0
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Sending compressed filters
Compressed (zstd) binary fuse filters can be within 5% of the theoretical minimum.
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Some links
Bloom filters in Go: https://github.com/bits-and-blooms/bloom

Binary fuse filters in Go: https://github.com/FastFilter/xorfilter

Binary fuse filters in C: https://github.com/FastFilter/xor_singleheader

Binary fuse filters in Java: https://github.com/FastFilter/fastfilter_java

Giant benchmarking platform: https://github.com/FastFilter/fastfilter_cpp
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Other Links
Blog https://lemire.me/blog/

Twitter: @lemire

GitHub: https://github.com/lemire
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