
Parsing Millions of URLs per Second
Yagiz Nizipli
GitHub: https://github.com/anonrig

Daniel Lemire
GitHub: https://github.com/lemire

https://github.com/anonrig
https://github.com/lemire

Software performance
Reduces cost (AWS, Azure)

Improves latency

Reduce complexity (parallelism, caching)

Don't cause climate change

D 2

State of Node.js Performance 2023
Since Node.js 18, a new URL parser dependency was added to Node.js — Ada.
This addition bumped the Node.js performance when parsing URLs to a new level.
Some results could reach up to an improvement of 400%. (State of Node.js
Performance 2023)

D 3

Just had a benchmark for a code change go from 11 seconds to complete down to
about half a second to complete. This makes me very happy.

James Snell, Cloudflare
Referencing adding Ada URL to Cloudflare Workers

Y 4

Structure of an URL
Example: https://user:pass@example.com:1234/foo/bar?baz#quu

protocol

user name, password

hostname

port

pathname

search

hash

Y 5

https://user:pass@example.com:1234/foo/bar?baz#quu

Examples
non-ASCII: http://�好�好.在线

File: file:///foo/bar/test/node.js

JavaScript: javascript:alert("node is awesome");

Percent Encoding: https://\%E4\%BD\%A0/foo

Pathname with dots: https://example.org/./a/../b/./c

Ipv4 address with hex/octal digits: https://127.0.0x0.1

D 6

WHATWG URL

input string https://7-Eleven.com/Home/../P/Montréal

PHP unchanged

Python unchanged

WHATWG URL https://xn--7eleven-506c.com/Home/P/Montr%C3%A9al

curl 7.87 https://7-Eleven.com/P/Montr%C3%A9al

Go runtime (net/url) https://7-Eleven.com/Home/../P/Montr%C3%A9al

D 7

Assumptions
Does URL parsing really matter? Is it bottleneck to some performance metric? Tbh
i care more about JS runtimes to handle CI/CD processes faster and more
parallelized.

URLs are free, you don't gain anything by overloading them.

Y 8

HTTP Benchmark

const f = require('fastify')()

f.post('/simple', async (request) => {
 const { url } = request.body
 return { parsed: url }
})

f.post('/href', async (request) => {
 const { url } = request.body
 return { parsed: new URL(url).href }
})

Input:
{ "url": "https://www.google.com/hello-world?query=search\#value" }

Y 9

URL parsing was a bottleneck in Node 18.15

Y 10

Wrote a C++ library (called Ada)
Named after Ada Nizipli

Full WHATWG URL support

No dependency, full portability

Over 20,000 lines of code

Six months of work, 25 contributors

Apache-2.0, MIT licensed

Available at https://github.com/ada-url/ada

Y 11

https://github.com/ada-url/ada

6 million URLs parsed/second

Apple M2, LLVM 14

Wide range of realistic data sources

Faster than alternatives in C, C++, Rust

WHATWG URL: whatwg-url and rust-url

D 12

Trick 1: perfect hashing

std::string_view names[] = {"http", " ", "https", "ws",
 "ftp", "wss", "file", " "};
enum type : uint8_t { HTTP, NOT_SPECIAL, HTTPS, WS, FTP, WSS, FILE};

type get_scheme_type(std::string_view scheme) noexcept {
 int hash_value = (2 * scheme.size() + scheme[0]) % 8;
 const std::string_view target = names[hash_value];
 if (target == scheme) {
 return type(hash_value);
 } else {
 return NOT_SPECIAL;
 }
}

D 13

Trick 2: use memoization (tables)
https://en.wikipedia.org/wiki/Memoization

uint8_t contains_bad_char(unsigned char* input, size_t length) {
 uint8_t accumulator = 0;
 for (size_t i = 0; i < length; i++) {
 accumulator |= is_bad_char[input[i]];
 }
 return accumulator;
}

D 14

https://en.wikipedia.org/wiki/Memoization

Trick 3: use vectorization
Do no process byte-by-byte when you can process 16-byte by 16-byte.

bool has_tabs_or_newline(std::string_view user_input) {
 size_t i = 0;
 const __m128i mask1 = _mm_set1_epi8('\r');
 const __m128i mask2 = _mm_set1_epi8('\n');
 const __m128i mask3 = _mm_set1_epi8('\t');
 __m128i running{0};
 for (; i + 15 < user_input.size(); i += 16) {
 __m128i word = _mm_loadu_si128(user_input.data() + i);
 running = _mm_or_si128(
 _mm_or_si128(running, _mm_or_si128(
 _mm_cmpeq_epi8(word, mask1),
 _mm_cmpeq_epi8(word, mask2))),
 _mm_cmpeq_epi8(word, mask3));
 }
 return _mm_movemask_epi8(running) != 0;
}D 15

Efficient C++/JavaScript bridge
Passing multiple strings is expensive.

Pass one string with offsets.

Y 16

JavaScript Benchmark

bench(filename, () => {
 for (let i = 0; i < lines.length; i++) {
 try {
 length += new URL(lines[i]).href.length;
 good_url++;
 } catch (e) {
 bad_url++;
 }
 }
 return length;
 });

https://github.com/ada-url/js_url_benchmark/

Y 17

https://github.com/ada-url/js_url_benchmark/

JavaScript Results

Y 18

The Ada C++ library is safe and efficient
Modern C++

Sanitizers

Fuzzing

Unit tests

 A few minor bugs were reported, mostly related to the standard. Quickly fixed.

D 19

Ada is available in the language of your choice
JavaScript with Node.js

C bindings at https://github.com/ada-url/ada

Rust bindings at https://github.com/ada-url/rust

Go bindings at https://github.com/ada-url/goada

Python bindings at https://github.com/ada-url/ada-python

R bindings at https://github.com/schochastics/adaR

Often the only way to get WHATWG URL support!

Y 20

https://github.com/ada-url/ada
https://github.com/ada-url/rust
https://github.com/ada-url/goada
https://github.com/ada-url/ada-python
https://github.com/schochastics/adaR

Links
https://www.ada-url.com (includes a playground)

@yagiznizipli's blog: https://www.yagiz.co

@lemire's blog: https://lemire.me

Y 21

https://www.ada-url.com/
https://www.yagiz.co/
https://lemire.me/

