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How fast is your disk?
PCIe 4 disks: 5 GB/s reading speed (sequential)

PCIe 5 disks: 14.5 GB/s (0.20$/GB)
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Fact
Single-core processes are often CPU bound
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How fast can you ingest data?

{ "type": "FeatureCollection",
  "features": [
[[[-65.613616999999977,43.420273000000009],
[-65.619720000000029,43.418052999999986],
[-65.625,43.421379000000059],
[-65.636123999999882,43.449714999999969],
[-65.633056999999951,43.474709000000132],
[-65.611389000000031,43.513054000000068],
[-65.605835000000013,43.516105999999979],
[-65.598343,43.515830999999935],
[-65.566101000000003,43.508331000000055],
...
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How fast can you parse numbers?

std::stringstream in(mystring);
while(in >> x) {
   sum += x;
}
return sum;

50 MB/s (Linux, GCC -O3)

Source: https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-
a-string-in-c/
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Some arithmetic
5 GB/s divided by 50 MB/s is 100.

Got 100 CPU cores?

Want to cause climate change all on your own?
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How to go faster?
Fewer instructions (simpler code)

Fewer branches
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How fast can you go?
AMD Rome (Zen 2). GNU GCC 10, -O3.

function bandwidth instructions ins/cycle

strtod (GCC 10) 200 MB/s 1100 3

ours 1.1 GB/s 280 4.2

17-digit mantissa, random in [0,1].
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Floats are easy
Standard in Java, Go, Python, Swift, JavaScript...

IEEE standard well supported on all recent systems

64-bit floats can represent all integers up to  exactly.
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Floats are hard

> 0.1 + 0.2 == 0.3
false
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Generic rules regarding "exact" IEEE support
Always round to nearest floating-point number (*,+,/)

Resolve ties by rounding to nearest with an even decimal mantissa/significand.
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Benefits
Predictable outcomes.

Debuggability.

Cross-language compatibility (same results).
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Challenges
Machine A writes float  to string

Machine B reads string gets float 

Machine C reads string gets float 

Do you have  and ?
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What is the problem?
Need to go from

(e.g., 123e5)

to
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Example

0.10000000000000000555

0.2000000000000000111

0.29999999999999998889776975
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Problems
Start with 32323232132321321111e124.

Lookup as a float (not exact)

Convert 32323232132321321111 to a float (not exact)

Compute 

Approximation  Approximation = Even worse approximation!
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Insight
You can always represent floats exactly (binary64) using at most 17 digits.

Never to this:

3.14159265358979323846264338327950288419716939937510582097494459230781
64062862089986280348253421170679
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We have 64-bit processors

So we can express all positive floats as
12345678901234567E+/-123 .

Or 

where mantissa 

But  fits in a 64-bit word!

19



Factorization
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Overall algorithm

Parse decimal mantissa to a 64-bit word!

Precompute  for all powers with up to 128-bit accuracy.

Multiply!

Figure out right power of two

Tricks:

Deal with "subnormals"

Handle excessively large numbers (infinity)

Round-to-nearest, tie to even
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SIMD

Stands for Single instruction, multiple data

Allows us to process 16 bytes or more with one instruction

Supported on all modern CPUs (phone, laptop)

Not portable
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SWAR

Stands for SIMD within a register

Use normal instructions, portable (in C, C++,...)

A 64-bit registers can be viewed as 8 bytes

Requires some cleverness
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Check whether we have a digit

In ASCII/UTF-8, the digits 0, 1, ..., 9 have values
0x30, 0x31, ..., 0x39.

To recognize a digit:

The high nibble should be 3.

The high nibble should remain 3 if we add 6 (0x39 + 0x6 is 0x3f)
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Silly formula to recognize a digit

(x & 0xF0) + (( (x + 6) & 0xF0 ) >> 4) = 0x33
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Check whether we have 8 consecutive digits

bool is_made_of_eight_digits_fast(const char *chars) {
  uint64_t val;
  memcpy(&val, chars, 8);
  return (((val & 0xF0F0F0F0F0F0F0F0) |
           (((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) 
           == 0x3333333333333333);
}

(Works with ASCII, harder if input is UTF-16 as in Java/C#)
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Then construct the corresponding integer

Using only three multiplications (instead of 7):

 uint32_t parse_eight_digits_unrolled(const char *chars) {
  uint64_t val;
  memcpy(&val, chars, sizeof(uint64_t));
  val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8;
  val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
  return (val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32;
}
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Positive powers

Compute  where  is only approximate (128 bits)

Maybe surprisingly, 128-bit precision is all that is needed to always get exact
results.

Noble Mushtak, Daniel Lemire, Fast Number Parsing Without Fallback Software:
Practice and Experience 53 (7), 2023
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Negative powers

Compilers replace division by constants with multiply and shift

credit: godbolt

Reading: Integer Division by Constants: Optimal Bounds,
https://arxiv.org/abs/2012.12369
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Negative powers

Precompute  (reciprocal, 128-bit precision)

Always get exact results.
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What about tie to even?

Need absolutely exact mantissa computation, to infinite precision.

But only happens for small decimal powers ( ) where absolutely exact
results are practical.
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What if you have more than 19 digits?

Truncate the mantissa to 19 digits, map to .

Do the work for 

Do the work for 

When get same results, you are done. (99% of the time)
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Overall

With 64-bit mantissa.

With 128-bit powers of five.

Can do exact computation 99.99% of the time.

Fast, cheap, accurate.
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Full product?

64-bit  64-bit  128-bit product

GNU GCC: __uint128_t .

Microsoft Visual Studio: _umul128

ARM intrinsic: __umulh

Go: bits.Mul64

C#: Math.BigMul
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Leading zeros

How many consecutive leading zeros in 64-bit word?

GNU GCC: __builtin_clzll

Microsoft Visual Studio: _BitScanReverse64

C++20: std::countl_zero

Go: bits.LeadingZeros64

C#: BitOperations.LeadingZeroCount
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C/C++

https://github.com/lemire/fast_float

GNU GCC

LLVM clang

used by Apache Arrow, Yandex ClickHouse, Microsoft LightGBM
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Go

Algorithm adapted to Go's standard library (ParseFloat) by Nigel Tao and others

Release notes (version 1.16): ParseFloat (...) improving performance by up to a
factor of 2.

Perfect rounding.

Blog post by Tao: The Eisel-Lemire ParseNumberF64 Algorithm
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Rust

function speed

from_str (standard) 130 MB/s

lexical (popular lib.) 370 MB/s

fast-float 1200 MB/s
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R

rcppfastfloat: https://github.com/eddelbuettel/rcppfastfloat

3x faster than standard library
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C#

FastFloat.ParseDouble  is 5x faster than standard library ( Double.Parse )

https://github.com/CarlVerret/csFastFloat/

credit: Carl Verret, Egor Bogatov (Microsoft) and others
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Further reading

Noble Mushtak, Daniel Lemire, Fast Number Parsing Without Fallback, Software:
Practice and Experience 53 (7), 2023

Daniel Lemire, Number Parsing at a Gigabyte per Second,
Software: Practice and Experience 51 (8), 2021

Blog: https://lemire.me/blog/
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