
Floating-point number parsing with perfect accuracy at a gigabyte per second

Daniel Lemire
professor, Université du Québec (TÉLUQ)
Montreal 

blog: https://lemire.me
X: @lemire
GitHub: https://github.com/lemire/

 work with Michael Eisel, Ivan Smirnov, Nigel Tao, R. Oudompheng, Carl Verret and
others!

https://lemire.me/
https://twitter.com/lemire
https://github.com/lemire/


How fast is your disk?
PCIe 4 disks: 5 GB/s reading speed (sequential)

PCIe 5 disks: 14.5 GB/s (0.20$/GB)

2



Fact
Single-core processes are often CPU bound

3



How fast can you ingest data?

{ "type": "FeatureCollection",
  "features": [
[[[-65.613616999999977,43.420273000000009],
[-65.619720000000029,43.418052999999986],
[-65.625,43.421379000000059],
[-65.636123999999882,43.449714999999969],
[-65.633056999999951,43.474709000000132],
[-65.611389000000031,43.513054000000068],
[-65.605835000000013,43.516105999999979],
[-65.598343,43.515830999999935],
[-65.566101000000003,43.508331000000055],
...

4



How fast can you parse numbers?

std::stringstream in(mystring);
while(in >> x) {
   sum += x;
}
return sum;

50 MB/s (Linux, GCC -O3)

Source: https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-
a-string-in-c/

5

https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-a-string-in-c/
https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-a-string-in-c/


Some arithmetic
5 GB/s divided by 50 MB/s is 100.

Got 100 CPU cores?

Want to cause climate change all on your own?

6



How to go faster?
Fewer instructions (simpler code)

Fewer branches

7



How fast can you go?
AMD Rome (Zen 2). GNU GCC 10, -O3.

function bandwidth instructions ins/cycle

strtod (GCC 10) 200 MB/s 1100 3

ours 1.1 GB/s 280 4.2

17-digit mantissa, random in [0,1].

8



Floats are easy
Standard in Java, Go, Python, Swift, JavaScript...

IEEE standard well supported on all recent systems

64-bit floats can represent all integers up to  exactly.

9



Floats are hard

> 0.1 + 0.2 == 0.3
false

10



Generic rules regarding "exact" IEEE support
Always round to nearest floating-point number (*,+,/)

Resolve ties by rounding to nearest with an even decimal mantissa/significand.

11



Benefits
Predictable outcomes.

Debuggability.

Cross-language compatibility (same results).

12



Challenges
Machine A writes float  to string

Machine B reads string gets float 

Machine C reads string gets float 

Do you have  and ?

13



What is the problem?
Need to go from

(e.g., 123e5)

to

14



Example

0.10000000000000000555

0.2000000000000000111

0.29999999999999998889776975

15



Problems
Start with 32323232132321321111e124.

Lookup as a float (not exact)

Convert 32323232132321321111 to a float (not exact)

Compute 

Approximation  Approximation = Even worse approximation!

16



Insight
You can always represent floats exactly (binary64) using at most 17 digits.

Never to this:

3.14159265358979323846264338327950288419716939937510582097494459230781
64062862089986280348253421170679

17



 credit: xkcd 18



We have 64-bit processors

So we can express all positive floats as
12345678901234567E+/-123 .

Or 

where mantissa 

But  fits in a 64-bit word!

19



Factorization

20



Overall algorithm

Parse decimal mantissa to a 64-bit word!

Precompute  for all powers with up to 128-bit accuracy.

Multiply!

Figure out right power of two

Tricks:

Deal with "subnormals"

Handle excessively large numbers (infinity)

Round-to-nearest, tie to even

21



SIMD

Stands for Single instruction, multiple data

Allows us to process 16 bytes or more with one instruction

Supported on all modern CPUs (phone, laptop)

Not portable

22



SWAR

Stands for SIMD within a register

Use normal instructions, portable (in C, C++,...)

A 64-bit registers can be viewed as 8 bytes

Requires some cleverness

23



Check whether we have a digit

In ASCII/UTF-8, the digits 0, 1, ..., 9 have values
0x30, 0x31, ..., 0x39.

To recognize a digit:

The high nibble should be 3.

The high nibble should remain 3 if we add 6 (0x39 + 0x6 is 0x3f)

24



Silly formula to recognize a digit

(x & 0xF0) + (( (x + 6) & 0xF0 ) >> 4) = 0x33

25



Check whether we have 8 consecutive digits

bool is_made_of_eight_digits_fast(const char *chars) {
  uint64_t val;
  memcpy(&val, chars, 8);
  return (((val & 0xF0F0F0F0F0F0F0F0) |
           (((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) 
           == 0x3333333333333333);
}

(Works with ASCII, harder if input is UTF-16 as in Java/C#)

26



Then construct the corresponding integer

Using only three multiplications (instead of 7):

 uint32_t parse_eight_digits_unrolled(const char *chars) {
  uint64_t val;
  memcpy(&val, chars, sizeof(uint64_t));
  val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8;
  val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
  return (val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32;
}

27



Positive powers

Compute  where  is only approximate (128 bits)

Maybe surprisingly, 128-bit precision is all that is needed to always get exact
results.

Noble Mushtak, Daniel Lemire, Fast Number Parsing Without Fallback Software:
Practice and Experience 53 (7), 2023

28



Negative powers

Compilers replace division by constants with multiply and shift

credit: godbolt

Reading: Integer Division by Constants: Optimal Bounds,
https://arxiv.org/abs/2012.12369

29

https://arxiv.org/abs/2012.12369


Negative powers

Precompute  (reciprocal, 128-bit precision)

Always get exact results.

30



What about tie to even?

Need absolutely exact mantissa computation, to infinite precision.

But only happens for small decimal powers ( ) where absolutely exact
results are practical.

31



What if you have more than 19 digits?

Truncate the mantissa to 19 digits, map to .

Do the work for 

Do the work for 

When get same results, you are done. (99% of the time)

32



Overall

With 64-bit mantissa.

With 128-bit powers of five.

Can do exact computation 99.99% of the time.

Fast, cheap, accurate.

33



Full product?

64-bit  64-bit  128-bit product

GNU GCC: __uint128_t .

Microsoft Visual Studio: _umul128

ARM intrinsic: __umulh

Go: bits.Mul64

C#: Math.BigMul

34



Leading zeros

How many consecutive leading zeros in 64-bit word?

GNU GCC: __builtin_clzll

Microsoft Visual Studio: _BitScanReverse64

C++20: std::countl_zero

Go: bits.LeadingZeros64

C#: BitOperations.LeadingZeroCount

35



C/C++

https://github.com/lemire/fast_float

GNU GCC

LLVM clang

used by Apache Arrow, Yandex ClickHouse, Microsoft LightGBM

36

https://github.com/lemire/fast_float


Go

Algorithm adapted to Go's standard library (ParseFloat) by Nigel Tao and others

Release notes (version 1.16): ParseFloat (...) improving performance by up to a
factor of 2.

Perfect rounding.

Blog post by Tao: The Eisel-Lemire ParseNumberF64 Algorithm

37

https://nigeltao.github.io/blog/2020/eisel-lemire.html


Rust

function speed

from_str (standard) 130 MB/s

lexical (popular lib.) 370 MB/s

fast-float 1200 MB/s

38



R

rcppfastfloat: https://github.com/eddelbuettel/rcppfastfloat

3x faster than standard library

39

https://github.com/eddelbuettel/rcppfastfloat


C#

FastFloat.ParseDouble  is 5x faster than standard library ( Double.Parse )

https://github.com/CarlVerret/csFastFloat/

credit: Carl Verret, Egor Bogatov (Microsoft) and others

40

https://github.com/CarlVerret/csFastFloat/


Further reading

Noble Mushtak, Daniel Lemire, Fast Number Parsing Without Fallback, Software:
Practice and Experience 53 (7), 2023

Daniel Lemire, Number Parsing at a Gigabyte per Second,
Software: Practice and Experience 51 (8), 2021

Blog: https://lemire.me/blog/

41

https://lemire.me/blog/

