
Algorithms for Modern Processor Architectures
Daniel Lemire, professor
Université du Québec (TÉLUQ)
Montréal

blog: https://lemire.me
X: @lemire
GitHub: https://github.com/lemire/

All software for this talk: https://github.com/lemire/talks/tree/master/2025/sea/software

https://lemire.me/
https://x.com/lemire
https://github.com/lemire/
https://github.com/lemire/talks/tree/master/2025/sea/software

Disk at gigabytes per second

2

PCI Express Bandwidth Comparison

PCIe 4.0 (2011)

31.5 GB/s

PCIe 5.0 (2017)

63 GB/s

PCIe 6.0 (2019)

128 GB/s

PCIe 7.0 (2022

242 GB/s

3

High Bandwidth Memory
Xeon Max processors contain 64 GB of HBM

Bandwidth 800 GB/s

4

Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia

Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia

Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia

Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia

5

Some numbers
Time is discrete: clock cycle

Processors: 4 GHz (cycles per second)

One cycle is 0.25 nanoseconds

light: 7.5 centimeters per cycle

One byte per cycle: 4 GB/s

Easily CPU bound

6

Frequencies and transistors

processor year frequency transistors

Pentium 4 2000 3.8 GHz 0.040 billions

Intel Haswell 2013 4.4 GHz 1.4 billions

Apple M1 2020 3.2 GHz 16 billions

Apple M2 2022 3.49 GHz 20 billions

Apple M3 2024 4.05 GHz 25 billions

Apple M4 2024 4.5 GHz 28 billions

AMD Zen 5 2024 5.7 GHz 50 billions

7

8

Where do the transistors go?
More cores

More superscalar execution

Better speculative execution

More cache, more memory-level parallelism

Better data-level parallelism (SIMD)

9

Where do the transistors go?
More cores

More superscalar execution (more instructions per cycle)

Better speculative execution (more instructions per cycle)

More cache, more memory-level parallelism (more instructions per cycle)

Better data-level parallelism (SIMD) (fewer instructions)

10

Superscalar execution

processor year arithmetic logic units SIMD units

Pentium 4 2000 2

AMD Zen 2 2019 4

Apple M* 2019 6+

Intel Lion Cove 2024 6

AMD Zen 5 2024 6

Moving to up to 4 load/store per cycle

11

Parsing a number
1.3321321e-12 to double

double result;
fast_float::from_chars(
 input.data(), input.data() + input.size(), result);

Reference: Number Parsing at a Gigabyte per Second, Software: Practice and
Experience 51 (8), 2021

12

Parsing a number

Apple M4
Intel Ice Lake

Instructions
250

150

50

0
Apple M4 Intel Ice Lake

Instructions per cycle
10

7.5

5

0
Apple M4 Intel Ice Lake

13

Lemire's Rule 1
Modern processors execute nearly as many instructions per cycle as you can
supply.

with caveats: branching, memory, and input/output

14

Lemire's Corrolary 1
In computational workloads (batches), minimizing instruction count is critical for
achieving optimal performance.

15

Lemire's Tips
1. Batch your work in larger units to save instructions.

2. Simplify the processing down to as few instructions as possible.

16

Going back to number parsing
Our number parser: major browsers (Safari, Chrome), GCC (12+), C#, Rust

About faster than the conventional alternatives.

How did we do it?

17

We massively reduced the number of CPU instructions required.

function instructions

strtod

our parser

Reference:
Number Parsing at a Gigabyte per Second, Software: Practice and Experience 51 (8),
2021

18

SWAR

Stands for SIMD within a register

Use normal instructions, portable (in C, C++,...)

A 64-bit registers can be viewed as 8 bytes

Requires some cleverness

19

Check whether we have a digit

In ASCII/UTF-8, the digits 0, 1, ..., 9 have values
0x30, 0x31, ..., 0x39.

To recognize a digit:

The high nibble should be 3.

The high nibble should remain 3 if we add 6 (0x39 + 0x6 is 0x3f)

20

ASCII processing flow

ASCII numbers

0 1 2 3 4 5 6 7

ASCII codes (hex)

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37

Zero lower 4 bits (AND 0xF0)

0x30 0x30 0x30 0x30 0x30 0x30 0x30 0x30

Add 6, shift right 4

0x03 0x03 0x03 0x03 0x03 0x03 0x03 0x03

OR result (hex)

0x33 0x33 0x33 0x33 0x33 0x33 0x33 0x33

21

Batching (unrolling)
6 to 7 instructions per multiplication

 for (size_t i = 0; i < length; i++)
 sum += x[i] * y[i];

3 to 5 instructions per mutiplication

 for (; i < length - 3; i += 4)
 sum += x[i] * y[i]
 + x[i + 1] * y[i + 1]
 + x[i + 2] * y[i + 2]
 + x[i + 3] * y[i + 3];

22

Apple M4
Instructions

Regular: 6 Unrolled: 3.5

Cycles

Regular: 1.2 Unrolled: 1.0

Intel Ice Lake
Instructions

Regular: 7 Unrolled: 5

Cycles

Regular: 1.6 Unrolled: 1.1
23

Knuth's random shuffle

PROCEDURE shuffle(array)
 FOR j FROM |array| - 1 DOWN TO 1
 k ← random_integer(0, j)
 SWAP array[j] WITH array[k]
 END FOR
END PROCEDURE

24

Batched random shuffle
Draw one random number

Compute two indices (with high proba)

Reduces the instruction count

Reduces the number of branches

25

Results (Apple M4): Use a large array (8 MB).
Instructions

25

15

5

0
Standard Batched (2)

Instructions per cycle
6

4

2

0

Cycles
6

4

2

0

Reference: Batched Ranged Random Integer Generation, Software: Practice and
Experience 55 (1), 2025

26

Branching
Hard-to-predict branches can derail performance

27

Unicode (UTF-16)
Code points from U+0000 to U+FFFF, a single 16-bit value.

Beyond: a surrogate pair [U+D800 to U+DBFF] followed U+DC00 to U+DFFF

28

Validate
Check for a lone code unit (), if so ok

Check for the first part of the surrogate () and if so
check that we have the second part of a surrogate

29

Validate

PROCEDURE validate_utf16(code_units)
 i ← 0
 WHILE i < |code_units|
 unit ← code_units[i]
 IF unit ≤ 0xD7FF OR unit ≥ 0xE000 THEN
 INCREMENT i
 CONTINUE
 IF unit ≥ 0xD800 AND unit ≤ 0xDBFF THEN
 IF i + 1 ≥ |code_units| THEN
 RETURN false
 next_unit ← code_units[i + 1]
 IF next_unit < 0xDC00 OR next_unit > 0xDFFF THEN
 RETURN false
 i ← i + 2 // Valid surrogate pair
 CONTINUE
 RETURN false
 RETURN true

30

Performance results (Apple M4)
Cycles

2

1.5

0.5

0
ASCII Alternate

Instructions
10

8

6

0
ASCII Alternate

Instructions per cycle
10

8

6

0
ASCII Alternate

1 character per cycle might be just 4 GB/s (slower than disk)

31

Performance results (Apple M4)

ASCII

Alternate

Random

Cycles
8

6

2

0
ASCII Alternate Random

Instructions
10

8

6

0
ASCII Alternate Random

Instructions per cycle
10

8

6

0
ASCII Alternate Random

We are now barely at 1 GB/s!

32

Speculative execution
Processors predict branches

They execute code speculatively (can be wrong!)

33

How much can your processor learn?

34

35

Finite state machine to the rescue
Can identify characters by the most significant 8 bits.

Trivial finite state machine: default, has just encountered a high surrogate, or error.

36

static uint8_t transition_table[3][256] = {
 {...},
 {...},
 {...}
};

bool is_valid_utf16_ff(std::span<uint16_t> code_units) {
 uint8_t state = 0; // Start in Initial state
 for (auto code_unit : code_units) {
 uint8_t high_byte = code_unit >> 8;
 state = transition_table[state][high_byte];
 }
 return state == 0; // Valid only if we end in Initial state
}

37

Performance results (Apple M4)

The finite-state approach can be faster!

0

1

2

3

4

5

6

7

Branch Finite

7

1.1

0

1

2

3

4

5

6

7

8

Branch Finite

8

7

0

1

2

3

4

5

6

Branch Finite

1.1

6.4

38

Rules of thumb
1. Processors can 'learn' thousands of branches: benchmark over massive inputs.

2. Pick a solution without branches when it provides the same performance.

39

Apple M4 can learn 10,000 random (0/1) branches.
Branch misses

50%

30%

10%

0%
4096 8192 16384 32768 65536 524288

40

Pipelining
How does the processor manage to validate one UTF-16 character per cycle
when it takes many cycles just to load the character?

41

cycle action action pizza en route

1 order pizza A

2 order pizza B A

3 order pizza C A , B

4 order pizza D eat pizza A B , C

5 order pizza E eat pizza B C , D

6 order pizza F eat pizza C D , E

42

Little's Law
Latency harms throughput

Parallelism hides latency

43

Memory-level parallism
Create large array of indices forming a cycle

Start with [0,1,2,3,4]

Shuffle so that no index can remain in place.

Start with [4,0,3,2,1]

Sandra Sattolo's algorithm

This forms a random path

44

1 lane

0 1 2 3 4 5 6 7 8 9

45

2 lanes

0 1 2 3 4 5 6 7 8 9

46

47

Consequence

Software Memory

Software Memory

48

Bloom filter

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash 1 Hash 2 Hash 3

49

Bloom filter
8 hash functions, (Intel Ice Lake processor, out-of-cache filter)

8

4

0

C
ac

he
 m

is
se

s

Not in set In set

3.5

7.5

Less than half the cache misses 50

Bloom filter

25% difference
200

100

0

C
yc

le
s

Not in set In set

135

170

51

Data-level parallelism

52

SIMD

Stands for Single instruction, multiple data

Allows us to process 16 (or more) bytes or more with one instruction

Supported on all modern CPUs (phone, laptop)

53

ASCII to lower case

For each character c
 If c - 'A' < 'Z' - 'A' then
 c = c + 'a' - 'A'
 EndIf
EndFor

54

ASCII to lower case: 64 characters in 3
instructions

Compute

__m512i ca = _mm512_sub_epi8(c, _mm512_set1_epi8('A'));

Turn into a mask

__mmask64 is_upper = _mm512_cmple_epu8_mask(ca, _mm512_set1_epi8('Z' - 'A'));

Add to according to mask

__m512i to_lower = _mm512_mask_add_epi8(c, is_upper, c, to_lower)

55

Deltas (C)
successive difference:

 for (size_t i = 1; i < n; ++i) {
 dst[i] = src[i] - src[i - 1];
 }

prefix sum:

 for (size_t i = 1; i < n; ++i) {
 dst[i] = dst[i - 1] + src[i];
 }

56

Apple M4

Cycles

0

1

2

Successive difference Prefix sum

1 1

Instructions

0

1

2

3

4

5

6

Successive difference Prefix sum

6

5

Instructions per cycle

0

1

2

3

4

5

6

Successive difference Prefix sum

6

5

57

Now allow SIMD! (Autovectorization)

Cycles

0

1

2

Successive difference Prefix sum

0.25

1

Instructions

0

1

2

3

4

5

6

Successive difference Prefix sum

0.9

5

Instructions per cycle

0

1

2

3

4

5

6

Successive difference Prefix sum

3.8

5

58

Need to learn SIMD design magic !

59

UTF-16
Write SIMD correction function (not just validation)

Actually deployed in v8 (Google Chrome, Microsoft Edge)

60

UTF-16, random (adversarial), Apple M4

Cycles

0

1

2

3

4

5

6

7

Branch Finite SIMD

7

1.1

0.3

Instructions

0

1

2

3

4

5

6

7

8

Branch Finite SIMD

8

7

0.4

Instructions per cycle

0

1

2

3

4

5

6

Branch Finite SIMD

1.1

6.4

4.6

61

Most x64 processors have AVX2 (32-byte register)

AMD Zen 5 has powerful AVX-512 (64-byte register)

ARM has NEON + SVE/SVE2

RISC-V has its vector instructions

Loonson processes have AVX2-like instructions

62

Interested? Check these projects
simdjson: The fastest JSON parser in the world https://simdjson.org

simdutf: Unicode routines (UTF8, UTF16, UTF32) and Base64
https://github.com/simdutf/simdutf

63

https://simdjson.org/
https://github.com/simdutf/simdutf

Measurements
We often assume that measurments (timings) are normally distributed.

It is often an incorrect assumption.

64

Measurements
If your measurements are normally distributed, the 'error' falls off as

65

66

Sigma events

σ σ2σ 2σ3σ 3σ

67

1-sigma is 32%

68

1-sigma is 32%

2-sigma is 5%

69

1-sigma is 32%

2-sigma is 5%

3-sigma is 0.3% (once every 300 trials)

70

1-sigma is 32%

2-sigma is 5%

3-sigma is 0.3% (once every 300 trials)

4-sigma is 0.00669% (once every 15000 trials)

71

1-sigma is 32%

2-sigma is 5%

3-sigma is 0.3% (once every 300 trials)

4-sigma is 0.00669% (once every 15000 trials)

5-sigma is 5.9e-05% (once every 1,700,000 trials)

6-sigma is 2e-07% (once every 500,000,000)

 for

72

What if we dealt with log-normal distributions?

73

Real-world measurements
You cannot assume normality

Measurements are not independent.

Reality: the absolute minimum is a often a reliable metric

Margin: difference between mean and minimum

74

Conclusion
Processors are get much better! Wider!

'hot spot' engineering can fail, better to reduce overall instruction count.

Branchy code can do well in synthetic benchmarks, but be careful.

75

